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Abstract 

Charge density determination from X-ray measurements 
necessitates the evaluation of the Fourier-Bessel transforms 
of the radial functions used to expand the charge density. 
Analytical expressions are given here for four sets of 
orthogonal functions which can substitute for the 'tradi- 
tional exponential functions' set in least-squares 
refinements. 

The charge density in crystals is usually expanded in terms 
of a series of nucleus-centered functions. The angular 
dependence of these functions is properly described in 
terms of spherical harmonics. To describe the radial depen- 
dence one can choose any arbitrary set of functions, as 
stated by Dawson (1967), mathematical simplicity being 
the main criterion. Several sets of radial functions have 
been proposed: harmonic-oscillator wavefunctions (Kurki- 
Suonio, 1968), exponential functions (Stewart, 1969), and 
Hartree-Fock-type functions (Hansen & Coppens, 1978). 
The charge density obtained from these multipole 
refinements has been used to calculate various electrical 
quantities such as atomic charges, molecular dipoles or 
electric field gradients. Recent work has shown that the 
choice of the radial functions may have some influence on 
the computed quantities (Restori & Schwarzenbach, 1986; 
Restori, Schwarzenbach & Schneider, 1987). 

The expressions needed to implement a set of functions 
into existing least-squares programs are given explicitly for 
four sets of orthogonal functions satisfying the criterion of 
mathematical simplicity. This criterion can be formulated 
as: the Fourier-Bessel transforms of practically all radial 
function sets are given by hypergeometric functions 
inF,(at , . . . ,  a,, ; h i , . . . ,  b,: -x2). Only for a few sets does 
the hypergeometric series have either a finite number of 
t~rms or represent a simple function (e -x, for example). 
The four sets presented here are (1) the H-atom wavefunc- 
tions, (2) the harmonic-oscillator wavefunctions (Kurki- 
Suonio, 1968) (values of the normalization constants are 
explicitly given here), (3) the Laguerre functions, (4) a set 
of orthogonalized Lorentzians. 
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For these four sets as well as for the exponential functions 
introduced by Stewart (1969), both the charge density func- 
tions and the atomic scattering factors can be written in 
the form 

J 
f~ t (x )=N,  txtg,t(x) ~. (-1)ka{[G(x)] k, (1) 

k = 0  

where N,t is a normalization constant, g,t(x) and G(x) are 
simple analytical functions of x, a~ are nume14eal 
coefficients a n d j  is related to n - l (we will call it the 'order' 
of the function). Explicit expressions are given in Table 1 
for thecha rge  density functions and in Table 2 for the 
atomic scattering factors. The normalization constants N~t 
can only be expressed in terms of a function of l Cj(1) 
different for each 'order' j. The functions Cj(I) are listed 
for j = 0 through 5 in Table 3. The expression of Ida, the 
derivative of the atomic scattering factors with respect to 
the radial parameter a, is also needed in the least-squares 
procedure and given by 

of.,_f~, [z(x) - xZ' /X],  (2) 
OOt Ot 

where Z stands for ~ = 0  (-1)ka{[G(x)] k, and .Y' for its 
derivative with respect to x. The functions z(x) are also 
given in Table 2. 

The use of the Laguerre functions should give the same 
results as the exponential functions proposed by Stewart 
(1969). since for any finite set of functions the population 
coefficients are related by a triangular matrix [pexr, = 
(M)PLag] provided that for a given l a complete set up to 
the same 'order' m is used in both sets. The H-atom 
wavefunctions are the only set for which x is dependent 
on n. The harmonic-oscillator wavefunctions are the only 
set for which the functions g and G are the same for the 
density and atomic scattering factor functions (Fourier 
invariant). 

One can use any of the sets of radial functions given in 
Table 1 in a least-squares refinement of charge density 
distributions without noticeable change in the amount of 
CPU time needed for the refinement, or without having to 
invest much effort in programming (the five sets of functions 
have been implemented in a 120-line Fortran set of sub- 
routines). It would be interesting to compare the results 
obtained for the electrical quantities from the refined par- 
ameters obtained for different sets of radial functions. 
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Table  1. Express ions  f o r  the charge densi ty  f unc t i ons  f o r  the f o u r  sets o f  or thogonal  f unc t ions  men t ioned  in the text  

Corresponding expressions for the exponential functions are given for completeness. 

H-atom Harmonic-oscillator 
Exponentials wavefunction wavefunction Laguerre Lorentzian 

j n - l  n - l - 1  [(n- l )  n - I  n - I - 1  

x ar a_ r ar ar ar 
n 

g.t(x) exp (-x) exp (-~x) exp (-½x 2) exp (-½x) 1/(1 +x2) "+l 
G(x) x x x 2 x 1 + x 2 

(2l+j+ l)! 2k(21+ 2j+ l)[! (2l+j+2)! (21+ 2j+ 3)!!(21+ 2j+ 2-k) !  

(21+k+l)! ( j -k) !k!  (21+2k+l)!!( j -k)!k!  (21+k+2)!(j-k)!k!  2k(21+2j+3-2k)!!(21+2j-t:2)!(j-k)!k! 

a (l+j+2)! -~n 2t(l+2)!Cj(l) a (l+l)!!Cj(l) q 21(1+2)!Cj(1 ) (l+l)!!(l-1)!!Cj(l) q* 

* q=(2/Tr) t/2, I even; q= l ,  1 odd. 
t" q = 1/It, 1 even; q = 1/2, l odd. 

q 

Table  2. Express ions  f o r  the a tomic  scattering f a c t o r  f unc t ions  f o r  the f o u r  sets o f  or thogonal  f unc t ions  men t ioned  in the text  

Corresponding expressions for the exponential functions are given for completeness. 

H-atom Harmonic-oscillator 
Exponentials wavefunction wave function Laguerre Lorentzian 

j n - l  n - l - I  ~(n-I) n - l  n - I - 1  

x 2 ~rS/a 41mS~ c~ 2 rrS/a 4 lrS/a 2 ItS~ a 
gnt(X) I / ( l+x2) t+j+2 l / ( l+x2) t+1+2 exp (--Ix2) l / (  l+x2) t+j+2 exp ( - x )  

G(x) x 2 x 2 x 2 x 2 x 
( j +  1 ) * (2 /+2 j+  1 ) !! 5" 2 k ( 2 / + 2 j +  1 ) !! (2 l+2 j+3)  !! 2 ~ (2 l+ j+2)  ! 

a~ 2k( j+l_2k)!(21+2k+l)!!k!  (21+2j+l-2k)! ! (21+2k+l)! ! ( j -k) !k!  (21+2k+l) ! ! ( j -k ) !k !  (21+2j+3-2k)!!(21+2k+l)!!( j -k)!k!  (21+k+2)!( j -k) !k!  

(2 /+ j+2) !  2(l+j+l)(21+j+l)! 1 (2 /+ j+2) !  1 
N.~ - -  qt q¢ 

(l+j+2)! (1+2) ! Cj(I) (1+I ) ! !  Cj(I) (1+2) ! Cj(I) (1+1)!!(I-1)!! C1(I) 
l - x  2 1 - x  2 l - x  2 

z( x) 2+j - (  l+j+ 2) - -  2+j- (  l+j+ 2) - -  - I+  x 2 2+j - (  l+j+ 2) - -  - I +  x 
l + x  2 l + x  2 l + x  2 

* a~  = 0  for k>-(j+3)/2.  

:1: q = 1, l even; q = (~-/2) 1/2, l odd. 

§ q = 2, I even; q = lr, I odd. 

Table  3. Funct ions  Cj(  l) appearing in the normal i za t ion  constants  N,,t 

H-atom Harmonic-oscillator 
j wavefunction wave function Laguerre 

0 1 1 1 
1 4 3 3 
2 /+9 ~(41+ 15) 1+6 
3 4(/+4) ~(12/+35) 3/+ 10 
4 ~[(/+9)(/+ 10)-40] ~[(4l+ 15)(4/+23)-30] ½[(/+6)(l+7)- 12] 
5 2[(l+4)(/+5)-2] ~[(12/+35)(12/+ 59) + 14] ~[(3/+ 10)(3/+ 13)-4] 

Lorentzian 

2 
6 

2(1+6) 
2(3/+10) 

(1+3)(I+10) 
(/+3)(3/+14) 
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